Bilan écologique de différents moyens de transport (TP3)

Tourisme et développement durable

Les carburants

Un carburant est un produit combustible dont l'énergie thermique va être transformée en énergie mécanique par un moteur.

La plupart des carburants utilisés actuellement sont issus de la distillation du pétrole. Il y a notamment l'essence et le diesel que l'on utilise pour les voitures et le kérosène qui est le carburant des avions.

Ces carburants sont des mélanges de divers composés : l'essence contient principalement de l'octane (C_8H_{18}) et de l'heptane (C_7H_{16}), tandis que le diesel est un mélange d'alcanes allant de $C_{15}H_{32}$ à $C_{20}H_{42}$ et le kérosène un mélange d'alcanes allant de $C_{10}H_{22}$ à $C_{14}H_{30}$.

Réaction de combustion

En présence de suffisamment d'air, les alcanes brûlent en produisant du gaz carbonique et de l'eau (combustion complète). Il se dégage beaucoup d'énergie de cette réaction de combustion.

alcane + oxygène → gaz carbonique + eau

Par souci de simplification, on considérera l'essence comme de l'octane pur (C_8H_{18}) , le diesel comme de l'hexadécane $(C_{16}H_{34})$ et le kérosène comme du dodécane $(C_{12}H_{26})$.

Equilibre la réaction de combustion de chacun de ces alcanes :

 $C_8H_{18} + \dots O_2 \rightarrow \dots CO_2 + \dots H_2O$

 $C_{16}H_{34} + \dots O_2 \rightarrow \dots CO_2 + \dots H_2O$

 $C_{12}H_{26}$ + O_2 \rightarrow CO_2 + H_2O

N'oublie pas la loi de conservation de la matière : dans une réaction chimique, il n'y a pas d'atome créé ou d'atome détruit.

Calcul des émissions de CO₂ par type de carburant

A l'aide d'un tableau périodique des éléments, calcule la masse d'une mole de :

C ₈ H ₁₈	C ₁₆ H ₃₄	C ₁₂ H ₂₆	CO ₂

En t'aidant de l'équation de combustion, calcule la masse de ${\rm CO_2}$ émise par mole de :

C ₈ H ₁₈	C ₁₆ H ₃₄	C ₁₂ H ₂₆

Calcule la masse de CO₂ rejetée par g de :

C ₈ H ₁₈	C ₁₆ H ₃₄	C ₁₂ H ₂₆

Sachant que la masse volumique de l'essence est de 0,74~kg/l, que celle du diesel est de 0,85~kg/l et que celle du kérosène est de 0,8~kg/l, calcule la masse de CO_2 rejetée par l de :

C ₈ H ₁₈	C ₁₆ H ₃₄	C ₁₂ H ₂₆

La voiture

Fiche technique d'une Renault Clio III

Vitesse maximale	167 km/h
0-100 km/h	13,4 s
Puissance	75 CH
Consommation moyenne	5,9 l/100km
Cylindrée	1149 cm ³
Carburant	Essence

Fiche technique d'une Volkswagen Polo Trendline 1400 TDI FAP

Vitesse maximale	164 km/h
0-100 km/h	14,6 s
Puissance	70 CH
Consommation moyenne	4,5 l/100km
Cylindrée	1422 cm ³
Carburant	Diesel

Pour les deux voitures proposées, calcule la quantité de CO₂ rejetée par km et par passager si on suppose que la voiture transporte 2 personnes :

Renault Clio III	VW Polo Trendline 1400 TDI FAP

L'avion

Fiche technique d'un Boeing 737 – 800

Capacité du réservoir	26'020 I
Rayon d'action	5'665 km
Vitesse moyenne	0,785 Mach
Nombre de passagers	189

Calcule la consommation de kérosène de cet avion par km :
Si on suppose que l'avion est rempli à 50 %, quelle est la quantité de CO ₂ rejetée par voyageur et par km ?

Le train	Un trai	n émet	une	moyenne	de	25,6	g	CO ₂ /km·passage
----------	---------	--------	-----	---------	----	------	---	-----------------------------

er pour un remplissage moyen du train.

Récapitulation

Moyen de transport	Quantité de CO ₂ émise par km et par passager
Voiture à essence (Clio)	
Voiture diesel (Polo)	
Avion	
Train	

Bilan	transport ?
	De quoi dois-tu aussi tenir compte lorsque tu choisis un moyen de transport pour
	un voyage ?

Auteurs Sources : 1. www.ac-nancy-metz.fr/enseign/svt

2. www.eduquer-au-developpement-durable.com

3. Agence de l'Environnement et de la Maîtrise de l'Energie (Ademe), Méthodologie de calcul des émissions de CO₂ associées aux déplacements, 2006

Auteur J.Chanex, joelle.chanex@fr.educanet2.ch

Mandant DICS
Expertise scientifique FED
Expertise pédagogique FED

Date de la dernière 13 mars 2009

modification

Copyright Friportal, Fribourg 2009

